1999 Vol. 1, No. 2 315-317

Dioxane—Monochloroborane: A New and Highly Reactive Hydroborating Reagent with Exceptional Properties

Josyula V. B. Kanth and Herbert C. Brown*

H. C. Brown and R. B. Wetherill Laboratories of Chemistry, Purdue University, West Lafayette, Indiana 47907-1393

hcbrown@chem.purdue.edu

Received May 6, 1999

ABSTRACT

O O:BCl₃ + B₂H₆ + 2 O O
$$\stackrel{10 \text{ °C}}{\longrightarrow}$$
 3 O O:BH₂C $\stackrel{6}{\longrightarrow}$ rt, 0.25 h

Dioxane-monochloroborane was prepared by the reaction of dioxane and dioxane-BCI₃ with diborane or NaBH₄ in 98% purity. The adduct thus obtained is a liquid, 6.2 M in BH₂Cl, stable indefinitely at either 0 or 25 °C. The adduct hydroborates simple unhindered olefins to the corresponding dialkylchloroboranes within 0.5 h, while moderately hindered olefins take 1-4 h at room temperature. Hindered tetrasubstituted olefins rapidly hydroborate to the monoalkylchloroborane stage with further hydroboration slow. Regioselectivity studies of representative olefins reveal that this new reagent possesses selectivities similar to those from the monochloroborane-diethyl ether adduct. Consequently, dioxane-monochloroborane can readily substitute for the older hydroborating agents, BH3:THF and BH3:DMS.

Hydroboration of alkenes using monochloroborane provides anti-Markovnikov hydroboration products in >99.5% isomeric purity, unlike the simple borane reagents, such as BH₃: THF and BMS, which give a mixture of regioisomers.² These product dialkylchloroboranes are widely used for many synthetic transformations. For example, dicyclohexylchloroborane has been used as an enolizing agent for aldol type reactions,³ while (+)- or (-)-Ipc₂BCl and Eap₂BCl reveal promising characteristics as chiral reducing agents.⁴ The current monochloroborane adducts, such as dimethyl sulfidemonochloroborane and diethyl ether-monochloroborane, serve major needs in these applications. However, these reagents do suffer from some disadvantages. The dimethyl

The increasing use of these monochloroborane reagents and the diverse applications of the product dialkylchloro-

(4) (a) Brown, H. C.; Chandrasekharan, J.; Ramachandran, P. V. J. Am.

Chem. Soc. 1988, 110, 1539. DIP chlorode is a trademark of Adrich

Chemical Company, USA. (b) Brown, H. C.; Ramachandran, P. V.;

Teodorovic, A. V.; Swaminathan, S. Tetrahedron Lett. 1991, 32, 6691. (c)

Ramachandran, P. V.; Brown, H. C. In Reductions in Organic Synthesis;

sulfide:BH2Cl is a stable reactive adduct, but exists in equilibrium with dimethyl sulfide-BH₃ (12.5%) and dimethyl sulfide-BHCl₂ (12.5%). Also, the unpleasant odor of dimethyl sulfide poses significant environmental problems in large-scale operations. The diethyl ether:BH₂Cl adduct is free from these problems but can be obtained only in approximately 90% purity. Moreover, this reagent is unstable and must be freshly prepared before utilization.⁵ The adduct, tetrahydrofuran-BH₂Cl, can be obtained in 98% purity; however, its slow reactivity and relatively rapid ring opening limits its applications.⁵

^{(1) (}a) Brown, H. C.; Ravindran, N. J. Org. Chem. 1973, 38, 182. (b) Brown, H. C.; Ravindran, N. J. Am. Chem. Soc. 1972, 94, 2112. (c) Brown, H. C.; Ravindran, N. J. Org. Chem. 1977, 42, 2533.

^{(2) (}a) Brown, H. C.; Subba Rao, B. C. J. Am. Chem. Soc. 1959, 81, 6428. (b) Brown, H. C.; Zweifel, G. J. Am. Chem. Soc. 1960, 82, 4708. (c) Brown, H. C. Organic Synthesis via Boranes: Wiley: New York, 1975. (3) Brown, H. C.; Dhar, R. K.; Ganesan, K.; Singaram, B. J. Org. Chem.

^{1992, 57, 499,}

Abdel-Magid, A.F., Ed.; American Chemical Soceity: Washington, DC, 1996; Chapter 5 (5) Brown, H. C.; Zaidlewicz, M. Polish J. Appl. Chem. 1983, 26, 155.

boranes in organic synthesis prompted us to investigate the possibilities of providing a more convenient reagent for these applications. Herein we report a new, highly pure, reactive monochloroborane:dioxane adduct for such applications. Moreover, dioxane—monochloroborane can readily substitute for the older hydroborating agents BH₃:THF and BMS.

Dioxane—BCl₃ was prepared by passing BCl₃ gas slowly into dioxane at 0 °C. The adduct thus obtained is a solid which melts at 56 °C (with decomposition), but is stable at 0 °C for several weeks. Reaction of this adduct with diborane in dioxane produces dioxane—BH₂Cl, as outlined in Scheme 1.

Scheme 1

O:BCl₃ + B₂H₆ + 2

$$\downarrow$$
 10 °C

3 O:BH₂Cl

The dioxane—BH₂Cl adduct thus obtained was 98% pure by 11 B NMR (+7.9, triplet). The adduct is a liquid, 6.2 M in BH₂Cl, with a hydrogen-to-chlorine ratio of 2.00:1.00. The stability of this adduct at 0 °C and room temperature (25 °C) was monitored using 11 B NMR examination of a sealed sample (2 M dioxane—BH₂Cl in dioxane) in an NMR tube, recording the 11 B NMR at intervals. It was also checked using active hydride analysis. Both of these studies did not show any detectable change over a period of one year.

To make the synthesis more convenient, the possibility was explored of synthesizing the dioxane—BH₂Cl complex using NaBH₄ and dioxane:BCl₃. However, the formation of dioxane—BH₂Cl was not achieved, as indicated by ¹¹B NMR, even after 3 days of stirring at room temperature (Scheme 2).

Fortunately, addition of small catalytic amounts of triglyme changed the course of reaction dramatically, so that dioxane: BH_2Cl was conveniently prepared by taking appropriate amounts of $NaBH_4$ (10% excess), dioxane, dioxane: BCl_3 , and 3 mol % of triglyme (Scheme 3).

Decantation of the clear supernatant layer provided dioxane:BH₂Cl of 98% purity. Interestingly, the ¹H NMR spectrum in CDCl₃ of dioxane:BH₂Cl thus obtained did not show the presence of triglyme. It is apparently absorbed by the precipitated sodium chloride. The adduct thus obtained

is 6.3 M in BH₂Cl and is stable indefinitely both at 0 °C and at room temperature.

Hydroboration of Representative Olefins with Dioxane-BH₂Cl. To examine the reactivity of this new adduct toward representative olefins, hydroboration studies using dioxane:BH2Cl were carried out in dioxane and in dichloromethane solvents. The hydroborations were carried out by the addition of an olefin in dioxane or dichloromethane to dioxane:BH₂Cl at 0 °C, followed by further stirring as the reaction mixture was brought to room temperature. The final solution was 0.5 M in BH₂Cl and 1 M in the olefin. Representative olefins such as 1-decene, 2-methyl-1-pentene, cis-4-methyl-2-pentene, 2-methyl-2-butene, β-pinene, cyclohexene, α-pinene, 3-carene, 1-phenyl-2-methyl-1-propene, 2,3-dimethyl-2-butene, and 1,2-dimethylcyclopentene were utilized. The progress of these hydroboration reactions was monitored by ¹¹B NMR and hydride analysis of the residual active hydride present by removing aliquots at intervals and measuring the hydrogen evolved by injecting them into a

Table 1. Hydroboration of Representative Olefins Using Dioxane—BH₂Cl in Dioxane and Dichloromethane at Room Temperature^a

	reaction		reaction	
	time (h)	hydride	time (h)	hydride
	in	\mathbf{used}^b	in	\mathbf{used}^b
olefin	dioxane	(equiv)	CH_2Cl_2	(equiv)
1-decene	0.25	2.00	0.25	2.00
2-methyl-1-pentene	0.25	2.00	0.25	2.00
cis-4-methyl-2-pentene	0.25	2.00	0.25	2.00
2-methyl-2-butene	0.50	2.00	0.50	2.00
β -pinene	0.25	2.00	0.25	2.00
cyclohexene	0.50	2.00	0.50	2.00
3-carene	0.50	2.00	1.0	2.00
α-pinene	0.50	1.92	0.50	1.82
	1.0	2.00	1.50	2.00
2-methyl-1-phenyl-1-	0.25	1.00	0.50	1.00
propene				
• •	4.0	1.82	4.0	1.76
2,3-dimethyl-2-butene	0.25	1.18	0.50	1.18
•	48.0	1.76	48.0	1.68
1,2-dimethylcyclopentene	0.50	1.00	0.50	1.00
, , , , , , , , , , , , , , , , , , ,	48.0	1.62	48.0	1.54

^a All reactions were carried out in solutions of dioxane or dichloromethane which were 1.00 M in olefin and 0.50 M in BH₂Cl (the olefin was used in small excess (5%)). ^b Hydride analysis was carried out by hydrolyzing an aliquot with a 1:1 mixture of glycerol—water and measuring the hydrogen evolved.

316 Org. Lett., Vol. 1, No. 2, 1999

Table 2. Products from Hydroboration-Oxidation of Representative Olefins with Dioxane-BH₂Cl in Dioxane

olefin	$products^a$	relative yield (%) of products with dioxane: $\mathrm{BH_2Cl}^b$	relative yield (%) of products with $(C_2H_5)_2O$: BH_2Cl	
1-octene	1-octanol	100	99.5	
	2-octanol	0.0	0.5	
2-methyl-1-butene	2-methyl-1-butanol	99.5	99.9	
	2-methyl-2-butanol	0.5	0.1	
2-methyl-2-butene	3-methyl-2-butanol	99.1	99.7	
	2-methyl-2-butanol	0.9	0.3	
styrene	2-phenyl-ethanol	95.0	96.0	
	1-phenyl-ethanol	5.0	4.0	
α -methylstyrene	2-phenyl-1-propanol	99.6	100	
	2-phenyl-2-propanol	0.4	0.0	
cis-4-methyl-2-pentene	4-methyl-2-pentanol	59.0	60.0	
•	2-methyl-3-pentanol	41.0	40.0	

^a The combined yields of the alcohol products were quantitative (≥99%) by GC analysis. ^b The relative yields of the product alcohols were obtained by GC analysis (Varian-3300) using a Carbowax column with an internal standard.

glycerin—water mixture. The mono-, di-, and some trisubstituted olefins were hydroborated rapidly to the corresponding dialkylchloroborane stage within 0.5 h. The more hindered olefins were rapidly hydroborated to the monoalkyl stage, with further hydroboration proceeding slowly. The results are presented in Table 1.

In the hydroboration of less hindered olefins using dioxane: BH_2Cl , only the corresponding dialkylchloroboranes⁶ were obtained as observed by the ¹¹B NMR value ($\sim+75$ ppm). These product dialkylboranes, being bulkier than BH_2Cl , do not complex with dioxane. Consequently, they can be used for further synthetic applications without any problem. Methanolysis of these products gave *B*-methoxydialkylboranes cleanly ($\sim+54$ ppm). However, in the hydroboration of hindered olefins such as 2,3-dimethyl-2-butene and 1,2-dimethylcyclopentene, considerable amounts of the monoalkylchloroboranes were also formed.

Regioselectivity Studies in the Hydroboration of Representative Olefins Using Dioxane—Monochloroborane. In continuation of the hydroboration studies with dioxane—

BH₂Cl, regioselectivity studies in hydroboration of some representative olefins were carried out. Hydroborations were carried out using dioxane—BH₂Cl (3 mmol) and an olefin (6 mmol) in dioxane. The olefin was added at 0 °C and the reaction mixture further stirred at room temperature. At the reaction time indicated (Table 1), the reaction mixture was oxidized using alkaline hydrogen peroxide. The ratio of the product alcohols was established by GC analysis using a Carbowax column with an internal standard. Table 2 summarizes the results. Earlier results obtained in a similar study using monochloroborane—ethyl etherate are included for comparison. ^{1a}

The present study clearly demonstrates that the new dioxane:BH₂Cl adduct is free of the problems that are associated with the reagents currently used and that clean hydroborations can be readily achieved with selectivities similar to those reported for the earlier reagents. Thus this new reagent should serve as an eco-friendly substitute for the reagents currently available.

Acknowledgment. Financial support from the Borane Research Fund is gratefully acknowledged.

OL990639B

Org. Lett., Vol. 1, No. 2, 1999

⁽⁶⁾ The synthesis and applications of such dialkylboranes are under investigation and will be reported subsequently.